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Abstract

A suboptimal control strategy to control heat treatment processes in a direct-fired batch type furnace is formulated.

It minimizes deviations from a prescribed temporal load temperature profile and the energy input in terms of the fuel

consumption. The control method requires a model for the heat transfer and combustion, which is described. Applica-

tion of the method shows that the fuel input and heat transfer to the load can be controlled to maintain a specified

instantaneous temperature. This is accomplished through a feedback loop that is constructed by comparing the desired

and measured temperatures. A parametric study is conducted to demonstrate the model.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Metallurgical heat treatment includes a set of impor-

tant industrial processes that, in general, beneficially

transform metal grain structure through imposed tem-

perature changes. Through the process, metals are nor-

malized, annealed, hardened or tempered so that they

acquire specific properties. Heat treatment must be care-

fully controlled to ensure that the load follows a desired

temporal temperature profile as closely as possible.

The heat treatment process inside a furnace can be

performed either continuously or in batches by using

hot combustion gases. The load in continuous furnaces

moves through differentially heated zones. In contrast,
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the temperature in batch furnaces is generally varied

by manipulating the heat supply rate. Direct-fired fur-

naces are generally of the batch type and a representa-

tive schematic is presented in Fig. 1. The dynamic

load–temperature profile in a batch furnace can be

established by controlling the fuel flowrate, which varies

the combustion heat release rate. In this context, there

are two important requirements, i.e., the fuel consump-

tion must be minimized [1] and the temporal tempera-

ture profile of the load inside the furnace must follow

the desired metal time–temperature changes as closely

as possible. The temperature profile in industrial appli-

cations usually deviates from the desired values due to

the complexities associated with heat transfer.

This paper presents a control strategy to simultane-

ously reduce the fuel consumption and minimize the

deviations of the instantaneous load temperature

from prescribed values during a heat treatment process.

Our method is based on the constrained minimization
ed.
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Fig. 1. Furnace geometry.

Nomenclature

a preexponential factor for Arrhenius equa-

tion (kg1.3/m1.3 s)

Cs specific heat of solid (J/kgK)

Cv specific heat of the product gas (J/kgK)

h convection coefficient (W/m2K)

Dhr heat of reaction (kJ/kg)

J performance index

k thermal conductivity (W/mK)

L length (m)

_m mass flowrate (kg/s)

n number of internal elements inside the load

nl number of elements inside the load

N exponent

Nu Nusselt number
_Q
000

rate of heat generation (J/s)

Re Reynolds number

t time (s)

dt time step (s)

T temperature (K)

Ta activation temperature (Ea/Ru, K)

Ti temperature of the ith element (K)

Tls temperature of the load surface (K)

U terminal weightage matrix

dv volume (m3)

V transient weightage matrix

W weightage on fuel minimization

Yf fuel mass fraction

Yin fuel mass fraction at furnace inlet

Greek symbols

e emissivity

k Lagrange multiplier

l viscosity of the product gas (Ns/m2)

q density of the product gas (kg/m3)

r Stefan–Boltzmann�s constant (5.67 · 108 W/

m2K4)

Subscripts

g gas

m measured

n non-measured

s solid

t total

x,y,z along x,y,z axes, respectively

Superscripts

t timestep

T matrix transposition operator
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technique [2]. The desired system performance stipulates

the control response speed, but care must be taken that

fuel flow variations do not lead to combustion instabil-

ities [3,4]. Whereas a fast response is required for appli-

cations such as gas turbines, which necessitates the use

of robust control strategies [5], industrial furnaces have

low frequency oscillations so that a slower response is

permissible.

A process model for furnace heating is first devel-

oped. It considers combustion within the furnace ambi-

ent, heat transfer to the load and heat conduction within
it. Our heat transfer analysis is based on a set of first

order linearized dynamic equations according to a ther-

mal network analysis [6]. We consider two-dimensional

transient heat conduction within the load, assuming

the third dimension to be sufficiently long. The process

model provides the constraint equation to establish opti-

mal control [7]. The fuel mass flowrate is obtained by

minimizing the performance index with the constraints

obtained from the process model. A sweeping method

[8] is used for this purpose.

The control strategy described in this paper is general

and applicable elsewhere, e.g., for general heating or

quenching processes [9], accelerated cooling processes

[10], minimizing the waste heat from an industrial proc-

ess (for instance, in the steam or flue gas leaving a tur-

bine), and optimizing the energy exchange at the

blades of a turbine. Our work can be extended to devel-

op a more powerful multiple input multiple output

(MIMO) control method. Furthermore, the method is

general; for instance, if electric current is considered as

the output variable instead of temperature, it is applica-

ble to many other problems of scientific and industrial

value. One such example is power management for

which grid scheduling is a dynamic problem. Here, the

power loss must be optimized through the proper distri-

bution of a single input current to several supply grids.
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2. Mathematical model

2.1. Process model

We assume a load in the form of a square prism

placed in a furnace with a uniform gas temperature.

Strong stirring of the gases, e.g., through mechanical cir-

culation, can maintain this temperature uniformity.

Heating of the furnace walls and the low-density gases

inside the furnace is neglected due to their small heat

capacities relative to the load. Radiation heat transfer

between the furnace and the load is considered, assum-

ing thermal equilibrium between the furnace wall and

the gases. A single-step global reaction is used to de-

scribe the combustion chemistry that occurs at a con-

stant stoichiometry.

The furnace with the load inside, as shown in Fig. 1,

is divided into several control volumes. We refer to these

control volumes as elements. The furnace ambient con-

sists of the gases and the wall as a single element. How-

ever, as shown in Fig. 1, the load is divided into several

smaller elements to account for transient heat conduc-

tion. One of these elements is circumscribed by the load

surface and the others are contained within it. The sur-

face element is designated as the ‘‘first’’ element and

there are n · n other elements within the load, as shown

in Fig. 2. Each has a square cross-section and is identi-

fied by using integers 2 through nl = n · n + 1. The load

ambient, or the furnace wall and gas space combine, is

the (nl + 1)th element. We assume that the furnace is

insulated, making conduction losses at the walls negligi-

ble. The two sides of the load, with square section, are

assumed to touch the insulated walls.

Convection and radiation heat transfer to the load

are modeled through the state-space approach, i.e.,

M _x ¼ Axþ Bu for t > t1; ð1Þ

where x represents state variables (which are for the load

the temperature field Tl, and for the load-ambient the
Figure 2
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temperature Tnl+1 and the fuel mass fraction Ynl+1),

and u the control variable (which is essentially the mass

flowrate _m of the fuel–oxidizer mixture). The arrays x

and u contain perturbation values that are deviations

from their respective means. Representing the instanta-

neous values (with a caret) of the temperature, fuel mass

fraction and fuel flowrate, respectively, in terms of their

means (with an overbar) and perturbations,

T t ¼ T þ T ; Y t ¼ Y þ Y and _mt ¼ _�mþ _m: ð2Þ

These variables can be expressed in the form

xT ¼ ½ xT
1 xT

2 �; ð3aÞ

i.e.,

xT
1 ¼ ½fT jgTj¼1 to nl�; ð3bÞ

xT
2 ¼ ½ T nlþ1 Y nlþ1� ð3cÞ

and

u ¼ u ¼ _m: ð3dÞ

Here the superscript T is an operator that transposes

matrices, and Tj represents the temperature of the jth

element. Boldfaced notations are vectors or matrices

and an italicized variable represents a scalar. In Eq.

(1), A and B are coefficient matrices that contain mean

terms and various geometrical parameters, such as the

characteristic length and the dimensions of the load

and the furnace. The mean values are held constant

for the process and the deviations represent the pertur-

bation values. The governing equations can be written

in terms of these constant terms and the perturbation

values, which are the variables used herein, using Eq.

(2).

A single input single output (SISO) control strategy is

developed, i.e., one input variable is manipulated to con-

trol a single output parameter. In our case, the single in-

put is reactant mass flowrate and the output is the load
Radiation

Convection

Internal elements of load
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surface temperature, monitored in practice with a ther-

mocouple. The heat transfer is modeled in two dimen-

sions by assuming negligible heat conduction along the

z-axis. The load is centrally suspended inside the fur-

nace. In accord with the network approach each element

participates in heat transfer with all other control ele-

ments [6].

The spatial discretization of the continuum process

model provides the matrices M, A and B in Eq. (1).

The process model is represented by equations gov-

erning heat transfer for the load and the furnace ele-

ments. Their interface conditions are in terms of the

load surface temperature Tls. These governing equations

are

qsCs

oT s

ot
¼ ks

o2T s

ox2
þ o2T s

oy2

� �
ð4Þ

for the internal elements of the load,

ks
oT ls

on
_ ¼ Qg

¼ hðT nlþ1 � T lsÞ þ 4reðT 3
nlþ1T nlþ1 � T 3

lsT lsÞ ð5Þ

for the surface element, and

_�mCpðT in � T nlþ1Þ þ _mCpðT in � T nlþ1Þ þ DhrDY f

¼ Qg2LxðLy þ LzÞ ð6Þ

for the furnace element. The species equation, for the

furnace element, has been formulated assuming the fur-

nace to be a well-stirred reactor [11–14]. This relation is

required to calculate the fuel consumption, and can be

expressed as

qgðdvnlþ1Þ
dY nlþ1

dt
¼ 0

¼ _�mðY in � Y nlþ1Þ þ _mðY in � Y nlþ1Þ � DY f :

ð7Þ

The symbol n
_

in Eq. (5) represents inward surface

normal. In Eqs. (6) and (7), DYf represents the linearized

species destruction during combustion. For a stoichio-

metric or fuel–lean mixture, the total species destruction

DYf,t can be expressed as [15]

DY f ;t ¼ aðdvnlþ1ÞqN
g ðY nlþ1ÞN expð�T a=T nlþ1Þ: ð8Þ

The linearized form of this relation is

DY f ¼ a � dvnlþ1q
N
g ðY nlþ1ÞN�1

� expð�T a=T nlþ1Þ NY nlþ1 þ Y nlþ1

T a

T
2

nlþ1

T nlþ1

 !
:

ð9Þ

Spatial discretization of Eqs. (4)–(7) yields the fol-

lowing expressions for the perturbation variables
qsCsðdv1Þ
T tþ1

1 � T t
1

dt

¼ ksLx

Xn
j¼1

T jþ1 þ
Xn2

j¼n2�nþ1

T jþ1 � 2nT 1

0
@

1
A

þ ksLx

Xn�1

j¼2

T ðj�1Þnþ2 þ
Xn
j¼3

T ðj�1Þnþ1 � 2ðn� 2ÞT 1

( )

þ 4NuksLxðT nlþ1 � T 1Þ þ 4

� 2LxðLy þ LzÞreðT
3

nlþ1T nlþ1 � T
3

1T 1Þ; ð10Þ

qsCs

T kþ1
j � T k

j

dt

¼ ks
T jþ1 � 2T j þ T j�1

Dx2
þ T jþn � 2T j þ T j�n

Dy2

� �

for j ¼ 2 to nl; ð11Þ

0 ¼ _�mCpðT in � T nlþ1Þ þ Dhra � dvnlþ1q
N
g ðY nlþ1ÞN�1

� expð�T a=T nlþ1Þ NY nlþ1 þ Y nlþ1

T a

T
2

nlþ1

T nlþ1

 !

� 2LxðLy þ LzÞhðT nlþ1 � T 1Þ þ _mCpðT in � T nlþ1Þ

� 4� 2LxðLy þ LzÞreðT
3

nlþ1T nlþ1 � T
3

1T 1Þ ð12Þ

and

0 ¼ _�mðY in � Y nlþ1Þ þ _mðY in � Y nlþ1Þ

� a � dvnlþ1q
N
g ðY nlþ1ÞN�1 � expð�T a=T nlþ1Þ

� NY nlþ1 þ Y nlþ1

T a

T
2

nlþ1

T nlþ1

 !
: ð13Þ

We have assumed a uniform temperature on the load

surface by virtue of strong mixing of the gas flowing

around the load. Since the conductivity of the load has

been assumed to be directionally invariant, the instanta-

neous isotherms inside it do not remain parallel to the

load surface. This does not allow rectangular shell-like

elements to be used for internal discretization of the

load. Instead, we use standard bar elements as shown

in Fig. 2. In terms of 3 · 3 bar elements along x and y

directions, this figure also depicts the indexing sequence

used in the discretized Eq. (10). The heat transfer coeffi-

cients used in Eqs. (10)–(13) can be evaluated on the

basis of an average Nusselt number [16].

We use the dimensionless forms of these matrices and

vectors (Eqs. (14)–(16) below) in our analysis. The fol-

lowing transformations are employed to normalize the

variables x, _x and u, namely,

x̂ ¼ x=T fi; ð14Þ

_̂x ¼ _x=ðT fi=dtÞ ð15Þ
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and

û ¼ u= _m: ð16Þ

Here, Tfi represents the initial temperature of the furnace

and dt the time interval for the process. The state space

equation (Eq. (1)) is made dimensionless to facilitate

a general control strategy. Therefore, the coefficient

matrices on both sides of the state space equation are

non-dimensionalized by dividing with the expression

qCv(Tfi/dt). Henceforth, the bold capital letters A, B

and M will represent the dimensionless forms for the

matrices A, B andM. Each row of the matrix in the state

space equation (Eq. (1)) represents the energy equation

for a separate element. It is developed by constructing

the matrices A, B and M and the vectors x, _x and u

based on Eqs. (10)–(13).

2.2. Control model

Metallurgical requirements limit the temporal varia-

tions in the reference (or ideal) load temperature Tt
R at

different times. The deviation between the actual load

temperatures and these reference values should be as

small as possible, particularly during the soaking phase.

If we divide the entire process into several time intervals,

we can define two different temperature deviations for

an interval. One is the deviation at the end of the inter-

val ranging from initial time t1 to final time t2 and the

other the corresponding sum over all discrete time steps

within that interval. Both of these deviations must be

minimized, as must the fuel consumption for the proc-

ess. Therefore, we will define a performance index that

contains all terms that are to be simultaneously mini-

mized. To simplify the mathematical treatment the

squares of these terms are used, which provide the sim-

plest form that can be minimized. We represent the per-

turbation in the reference temperature by TR.

The three different variables to be minimized are

J 1 ¼
1

2
ðDxðt2Þ � TRðt2ÞÞTUðt2ÞðDxðt2Þ � TRðt2ÞÞ;

ð17aÞ

J 2 ¼
1

2ðt2 � t1Þ

Z t2

t1

fðDx� TRÞTVðDx� TRÞgdt ð17bÞ

and

J 3 ¼
1

2ðt2 � t1Þ

Z t2

t1

fuTWugdt: ð17cÞ

The first relation (Eq. (17a)) represents the end state

deviation. The matrix TR contains the desired load ele-

ment temperatures at any time during the process. The

diagonal matrix D contains either a null value or

‘‘one’’ along its diagonal. It is used to determine the tem-

perature deviation for the elements for which the tem-

perature is measured by a sensor. Entries that equal
‘‘one’’ indicate the locations of the m states that are

measurable in practical applications. For instance, it is

possible that a sensor can measure only the load surface

temperature and not the spatial temperature distribution

within its bulk. Eq. (17b) represents the integrated devi-

ation of the measured temperature from its desired value

over the duration of the process. Again, matrix D de-

notes those elements for which temperature measure-

ments are available. The third relation (Eq. (17c))

considers the total fuel consumption during the process.

These three terms are combined in Eq. (17d) and mini-

mized simultaneously using the state space equation as

the constraint.

The performance index can thereafter be written in

the form [17]

J ¼ J 1 þ J 2 þ J 3

¼ 1

2
ðDxðt2Þ � TRðt2ÞÞTUðt2ÞðDxðt2Þ � TRðt2ÞÞ

þ 1

2ðt2 � t1Þ

Z t2

t1

fðDx� TRÞTVðDx� TRÞ þ uTWugdt:

ð17dÞ

We have employed the weighting matrices U, V and

W, which have non-zero entries only at diagonal loca-

tions. The integrated expression (i.e., the second term

on the RHS of the expression) is divided by a time dif-

ference to retain dimensional homogeneity for the terms

contained in the performance index.
The relative importance of the terms in the cost func-

tion is allocated by varying the relative magnitudes of

the diagonal elements of matrix U with respect to the

corresponding values in the matrices V and W. The con-

trol performance can be evaluated by selecting different

values of V and W, obtaining values of U for each cho-

sen set and observing the response.

The performance index is minimized using the state

space equation (Eq. (1)) as the constraint. Following

the constrained minimization approach of introducing

costates or Lagrangian multipliers k [18], we obtain the

following relations:

�MT _k ¼ ATkþDTVðDx̂� TRÞ for t 6 t2; ð18aÞ

û ¼ �W �1BTk ð18bÞ

and

MTkðt2Þ ¼ DTUðDx̂ðt2Þ � TRðt2ÞÞ ¼ DTUDx̂: ð18cÞ

In Eqs. (18a) and (18b), the term 1/(t2�t1) is incorpo-

rated within V and W. The regulatory control described

in Eqs. (18a)–(18c) causes the perturbations at the termi-

nal state of the process to approach zero. Details of this

derivation can be obtained following the procedure de-

scribed by Lewis and Syrmos [17]. Using the sweeping

method [8], it is customary to extend Eq. (18c) over all

times by removing the terminal time from the last

expression to obtain
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MTk ¼ Sx̂; with Sðt2Þ ¼ U: ð19Þ

In obtaining the last equation in the form given, the

matrix D has been chosen as a unitary matrix.

As noted earlier, due to the relatively small gas-phase

density in comparison with the solid, the right-hand

sides of Eqs. (12) and (13) are zero. Thus, in the state

space equation (Eq. (1)), the row in matrix M corre-

sponding to the energy equation for the furnace element

has a null value, making that matrix singular. The con-

trol coefficient B also possesses a singularity, since the

control variable of the reactant flowrate is a gas-phase

variable and, hence, the rows corresponding to the load

elements have null values. Thus, the energy equations

corresponding to the nodes in the load and furnace are

a set of dynamic equations that have time derivatives

and which can be reduced to an algebraic relation. Con-

sequently, Eq. (1) can be discretized and written in the

form

Ml 0

0 0

� �
_̂x ¼

A11 A12

A21 A22

� �
x̂1

x̂2

� �
þ

0

B2

� �
û: ð20Þ

We will exploit this structure by partitioning the

matrices in Eqs. (18a)–(18c). Each matrix is expanded,

yielding a pair of matrix equations through the parti-

tion. Subsequently, the equations are manipulated to

eliminate variables and costates corresponding to the

gas phase. Through this simplification, Eq. (20) assumes

the form

Ml _̂x1 ¼ A
_

11x̂1 þ B
_
û; ð21Þ

where

A
_

11 ¼ A11 � A12A
�1
22 A21 and B

_ ¼ �B2A
�1
22 A12: ð22Þ

Comparing Eqs. (21) and (22) with their discretized

counterparts, i.e., Eqs. (10)–(13), the following observa-

tions can be made. MatrixMl is diagonal and matrix A11

is diagonally dominant with its diagonal coefficients of

equal magnitude but with opposite sign to the sum of

all other elements in the same row. The matrix algebra

corresponding to Eq. (22) leaves all coefficients other

than in Row 1 unchanged. The Row 1 coefficients under-

go modification due to substitution of Eqs. (12) and (13)

in Eq. (10) to eliminate the gas-phase variables. In the

process, the input control variable, i.e., the reactant

mass flowrate, appears in the discretized representation

of the temperature variation of the load surface element.

The shell element responds to changes in the input var-

iables. Since this element constitutes the boundary of the

cluster of all other load elements, an element in the clus-

ter is also bound to respond to a change in the input.

This response occurs with a time delay that depends

on the depth of the element in relation to the surface

due to transient conduction. Clearly, Eq. (21) represents

a system that is controllable. The matrix A is diagonally
dominant and only a diffusive timescale is present for the

problem. Thus, the system of equations is well posed

and not stiff.
3. Results and discussion

3.1. Analytical results

Using the matrix splitting scheme of Eq. (20) along

with the zero and non-zero splitting of B matrix, Eq.

(18b) can be written as

û ¼ �W�1BT
2 k2 ¼ W�1

�
M�1

l B
_ �T

Sx̂1: ð23Þ

To arrive at this relation, Eq. (18) and split forms of

Eq. (19) (with the zero and non-zero parts of the mass

matrix M) have been used. Further, using Eqs. (18a),

(19), (21) and (23) and following the steps in Ref. [17],

the Ricatti equation is obtained, namely,

� _S ¼
�
M�1

l A
_

11

�T
Sþ SM�1

l A
_

11

þ SM�1
l B

_
W�1

�
M�1

l B
_�T

S; t < t2: ð24Þ

Eq. (24) is solved with the final condition provided by

Eq. (19). Employing this solution in Eq. (23), the control

parameter can be determined. This requires that all load

states be measured. However, the temperature in practi-

cal furnaces can only be measured at some specific loca-

tions on the load surface, e.g., using thermocouples or

imaging devices. As is evident from Eq. (23), the evalu-

ation of the control strategy requires the online measure-

ment of the vector x̂1, which contains all of the load

temperatures, both at the surface and in interior non-

measured locations. For proper control, this online cal-

culation of the states can be accomplished through

reduced order modeling of Eq. (23) [19]. The reduced

order method is an effective approach to deal with prob-

lems that provides real-time solutions of continuum

systems.

Recently, Tiwari et al. [20] have demonstrated in the

context of a glass cooling problem that sub-optimal con-

trol, which neglects the dependence of the control input

on the subsurface temperatures, produces acceptable

output variation that is in agreement with detailed

numerical heat transfer modeling. Following a similar

approach for obtaining suboptimal control, the matrices

are decomposed further to distinguish between meas-

ured and non-measured locations, i.e.,

A11 ¼
Amm Amn

Anm Ann

� �
ð25aÞ

and

Ml ¼
Mm 0

0 Mn

� �
: ð25bÞ
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surface element.
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The subscripts m and n represent partitions correspond-

ing to measured and non-measured load temperatures.

Next, we obtain the sub-optimal control relation from

Eq. (23) in the form

û ¼ K0x̂m; ð26aÞ

where

K0 ¼ W�1½M�1
m Bm�TSm ð26bÞ

denotes the gain constant. This constant can be utilized

to determine the feedback gain as evident from Eq.

(26a).

3.2. Example

A preliminary exercise to examine the applicability of

the control strategy is conducted by evaluating the feed-

back gain constant K0 and its response for a typical

process by varying the magnitudes of the different

weighting matrices and other physical parameters, such

as the load and furnace dimensions. The major assump-

tions used in the model are as follows. The heat genera-

tion in the furnace element is assumed to occur due to

the complete combustion of methane through a one step

global reaction in a homogeneous mixture of fuel and

preheated oxidizer. The gas-phase thermal conductivity,

density and specific heat correspond to those for the

burned gas temperature. The combustion heat genera-

tion is assumed to occur uniformly throughout the

furnace volume and produce a uniform furnace temper-

ature. Likewise, convective heat transfer is assumed to

be uniform at all surfaces of the load. The average Nus-

selt number is defined as a function of the Reynolds and

Prandtl numbers. Constant temperature furnace walls

are assumed to radiate heat to the load, but the furnace

gas is assumed to be a non-participating radiation med-

ium. The wall temperatures are obtained by considering

both radiation and convective heat transfer. The load

surface element receives heat due to furnace wall radia-

tion and convection from the combustion products. It

conducts this heat into its interior. The heat transfer to

the internal load elements from the surface element is

modeled using two-dimensional transient heat conduc-

tion relations. Since the load has a large specific heat,

the heat transferred through one side of an element is

assumed to be quickly transferred to its other sides,

thereby maintaining a uniform surface temperature.

The weighting matrices determine the relative impor-

tance of the control objectives in the performance

index [10]. A change in the furnace dimensions changes

the Reynolds number and altering the width of the

surface element modifies the heat capacity of this

element.

The gain constant varies with time and can have neg-

ative values (as shown in Figs. 2–5) in contrast with clas-

sical PID-type control, which provides a time invariant
feedback constant. This is clarified by examining Eq.

(26a). If the actual load temperature at any instant is

lower than the desired value, then the fuel flowrate must

be increased in order to provide more combustion heat.

Thus, the quantity û becomes positive or negative as

the quantity xm has negative and positive values,
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respectively. For this to occur, the gain constant K0

should be negative.

As an example, we consider the heat treatment of

steel that promotes steel hardness by changing its grain

structure. It involves preheating, austenitizing, soaking

and then cooling. Before austenitizing a steel load by

heating it above 1000 K, it must be first preheated to re-

move these stresses. This involves initial heating in the

range 500–700 K. For a representative analysis of the

control method, we have considered accelerated preheat-

ing over this temperature range for 300 s. The oxidizer

stream is assumed to consist of either air or pure oxygen

that is preheated to 1473 K (1200 �C). In both cases, un-

heated methane (at 300 K) is assumed to mix with the

oxidizer stream in near stoichiometric proportions and

the mixture temperature is determined (1361 K for air

and 1090 K for oxygen). The fuel mass fraction is 0.2

in case of oxygen as oxidizer and 0.055 when air is

considered.

The heat treatment process inside a direct-fired fur-

nace is simulated using MATLAB software. We have

considered a steel load with a 1 m side (i.e., Lx = Ly =

Lz = 1). The Reynolds number of the hot gas (that pro-

vides convective heat transfer to the load) is calculated

on the basis of the load dimension, i.e.,

Re ¼ _mL
Afl

� �
; ð27Þ

where Af denotes the furnace cross-section area, L the

load length and l the viscosity of the flue gas. There-

after, the Nusselt number is calculated. The furnace

dimension characterizes the total amount of flue gas in-

side it and it is also used to determine the amount of

heat released due to combustion. We will vary the fur-

nace dimension to investigate its influence on the gain

constant. The load and furnace gas properties and the

combustion relations used in the simulation are pro-

vided in Table 1.

A mean fuel–oxidizer mixture flowrate is first calcu-

lated based on a lumped model analysis that assumes

the total utilization of the combustion heat release.
Table 1

Load and flue gas properties

Load property

Thermal conductivity 60.5 W/mK

Specific heat capacity 434.0 J/kgK

Density 7854.0 kg/m3

Flue gas property

Heat of reaction 50,016 kJ/kg

Preexponential factor 1.3 · 108 kg1.3/m1.3 s

Viscosity 5 · 10�5 Ns/m2

Activation temperature 24,358 K

Density exponent �0.3
The product of the gain constant and the instantaneous

temperature perturbation provides the required flowrate

change from this mean value. The relation used for the

lumped model analysis is

mlCs

dT l

dt
¼ _mY fDhr: ð28Þ

The right hand side of this expression corresponds to

the combustion heat release while the left side represents

the amount of heat stored in the load. The fuel fraction

in the gas mixture with a mass flowrate _m is Yf. The heat

of reaction during combustion is Dhr. There is an impli-

cit assumption that the combustion heat release is en-

tirely used to heat the load, which is considered as a

lumped solid of mass ml and specific heat Cs.

For a 200 �C temperature rise in 300 s when pure

oxygen is used as oxidizer, the mean mixture mass flow-

rate is 0.23 kg/s (using Eq. (28)). Assuming system

dependent losses of �25%, a mass flowrate of 0.3 kg/s

is used in the simulation. When a stoichiometric meth-

ane–air mixture is burned, the fuel mass fraction is

0.055. For this mixture, the total flowrate is 1.09 kg/s

if the same fuel flowrate is used as for the pure oxygen

example. The gain constant K0 is calculated using Eq.

(26b) and the variation of this constant during the proc-

ess is presented in Figs. 3–6. Its value is used to deter-

mine the required fuel flowrate. We have used 11

elements for our simulation, 1 for the furnace element,

1 for the surface element of the load and 3 · 3 internal

elements for the load. The computation time is fast,

being �10 s with a Pentium IV 2.3 GHz processor.
3.2.1. Gain constants

Comparisons have been made between the absolute

values of the gain constants in order to have a physical

insight into the change in the fuel flowrate. We first dis-

cuss the control method when pure oxygen is used as the

oxidizer. An increase in the terminal weight produces a
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smaller temperature deviation at the conclusion of the

process. With the other two weighting matrices held con-

stant, the value of the terminal weight matrix can be var-

ied to determine its influence. To do so, V and W were

assumed to have constant values of 0.33 and 0.033,

respectively for a 0.3 m wide surface element. Fig. 3

shows that the dimensionless feedback gain constant

has the same initial value for different values of U at

the beginning of the process but decreases as the termi-

nal state is approached. Eq. (26b) reveals that the gain

constant K0 varies with the value of Sm, which is U

(from Eq. (19)). Thus, a larger positive value for K0

can be expected at the final state when a greater weigh-

tage is placed on U. Larger values of U produce a larger

end state feedback gain constant at the end state. The

gain constant�s value decreases at earlier times for larger

terminal deviation weights. The identical initial feedback

constant values confirm that the U matrix only influ-

ences the process end state.

Likewise, the transient weighting matrix V can be

changed with other matrices held constant. U and W

were kept fixed with values of 100 and 0.033, respectively

for a 0.3 m wide load. An increase in the weighting of V

results in greater minimization of temperature devia-

tions during the entire process. In this case, as the value

of V is increased that of the gain decreases towards lar-

ger negative values as shown in Fig. 4. However, unlike

the case for U, initial values of the gain constant are dif-

ferent for different weights. A larger gain constant im-

plies a faster response to minimize temperature

deviations at intermediate steps. This constant is larger

when the weighting is increased, which also suggests that

the fuel flowrate must be momentarily increased to min-

imize all intermediate temperature deviations during the

process. Fig. 4 shows the relative importance of the

weighting on the minimization of temperature devia-

tions for the entire process.

The effect of a change in the surface element width

(that is characteristic of all external load dimensions)

on the dynamic feedback gain constant is presented in

Fig. 5. Values of U, V and W are fixed at 100, 0.33

and 0.033, respectively. The gain constant value de-

creases with increasing dimension. The rate of this de-

crease is slightly different for the three element widths

that are 0.1, 0.2 and 0.3 m. As the width increases,

the load heat capacity increases, which improves re-

sponse of the load to heating, which is reflected in the re-

sult. This can also be inferred from Eq. (26b), which

shows that the gain constant is inversely proportional

to the mass matrix Mmm corresponding to the measured

nodes. As the surface width increases, the elements of

the mass matrix have larger values, resulting in a smaller

gain.

The effect of furnace dimensions is next investigated.

The values of U, V and W are held at 100, 0.33 and

0.033, respectively for a 0.3 m load surface element
width. As the furnace dimension increases, the gain con-

stant becomes larger. For a fixed mass flowrate of the

fuel–oxidizer mixture the convective heat transfer to

the load decreases in larger furnaces as the Reynolds

number decreases (cf. Eq. (27)). This is reflected through

the smaller Nusselt number. For the same surface

heat transfer to a specified load, a furnace with larger

dimensions requires a higher combustion heat release

rate, i.e., a larger fuel flowrate. This is clear in Fig. 6,

which shows that the gain constant is larger for a larger

furnace.

When air is employed as the oxidizer instead of pure

oxygen, the nature of the various relations is essentially

the same. The effect of various parameters on the gain

constant for methane–air flames is discussed next. Fig.

3 shows the effect of the change of the terminal weigh-

tage matrix with time. In this case, the other weightage

matrices V and W are held constant, as is the width of

the surface element. As in the previous case with oxygen

as the oxidizer, the gain constant decreases at earlier

times and has a slightly larger end value when the termi-

nal weightage is increased. That the initial values are

identical irrespective of U confirms that the terminal

state weightage matrix has an influence only during

the terminal state.

Next, we examine the effect of changing V keeping U,

W, the surface element width and the furnace dimen-

sions constant. We again determine (in Fig. 4) that the

initial gain constant increases with an increase in the

weightage of V due to the larger corrections imposed

for temperature deviations during all intermediate steps.

Fig. 5 illustrates how the load surface element width

influences the feedback gain constant when the weigh-

tage matrices and all other geometrical parameters are

held constant. It, too, has the same nature and validates

the applicability of this control strategy for various oxy-

gen contents in the oxidizer stream.

Finally, a comparison is provided between the feed-

back gain constants in Fig. 7 when air and oxygen are
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used as the oxidizer. When all other parameters are held

constant, the gain required in the case of air has a larger

magnitude than for oxygen. This can be interpreted as

follows. With oxygen as the oxidizer, the fuel mass frac-

tion is 0.2 as compared to 0.055 for a methane/air mix-

ture. A specified increase in the heat release rate requires

that the fuel flowrate must be increased by a certain

amount, which is a much larger proportion of the total

mass flowrate in case of air than when oxygen is used

as the oxidizer (cf. Eq. (26a)). Thus, for the same tem-

perature deviation, the feedback gain to obtain an iden-

tical increase in the heat release rate is larger when air is

used. This also offers qualitative validation of the con-

trol strategy.
4. Conclusions

We have shown that the response of a load to an

external transient heat source can be represented

through a feedback control structure. The formulated

control strategy provides an offline determination of

the values of the time-varying gain constant. This gain

constant together with the real time temperature meas-

urements of the load can be used to regulate a time var-

ying fuel flow that is used to heat a load along a specified

temporal temperature profile. In this manner, the load

temperature can correspond to the desired temperature

at any intermediate time or at the end of the process clo-

sely. The importance of a judicious selection of the

weighting matrices involved in the control process is

demonstrated.

We are able to minimize temperature deviations and

the fuel flowrate simultaneously using a suboptimal

strategy. The control strategy is validated through a

parametric study that varies the weightage matrices,

the load dimension and the furnace geometry. It reveals

that while an increase in the transient weightage results

in a larger initial gain value, an increase in the terminal

weightage results in a higher gain constant at the termi-

nal state. An increase in the thickness of the surface ele-

ment produces a gain curve that diminishes rapidly in

value while an increase in the furnace dimension results

in a higher initial gain. Simulations performed to calcu-

late the gain constant show that the control strategy can

be applied irrespective of the content of the oxidizer

stream.
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